Sara Quinn
Rosary College of Arts, Education, and Sciences
Director of the Core Curriculum, Core Curriculum
Rosary College of Arts, Education, and Sciences
Mokry, J., & Quinn, S. B. (2025). Peer-Led Team Learning in College Algebra. PRIMUS, 35(2), 214–231. https://doi.org/10.1080/10511970.2025.2460158
Carson, J., Harizanov, V., Knight, J., Lange, K., McCoy, C., Morozov, A., Quinn, S., Safranski, C., & Wallbaum, J. (2012).Describing free groups. Transactions of the American Mathematical Society, 364, 5715-5728. Retrieved from AMS :: Transactions of the American Mathematical Society.
Carson, J., Fokina, E., Harizanov, V., Knight, J., Quinn, S., Safranski, C., & Wallbaum, J. (2012). The computable embedding problem. Algebra and Logic, 50, 478–493. Retrieved from The computable embedding problem | Algebra and Logic.
Fokina, E., Knight, J., Melnikov, A., Quinn, S., & Safranski, C. (2011). Classes of Ulm type and coding rank-homogeneous trees in other structures. The Journal of Symbolic Logic, 76(3), 846-869. Retrieved from CLASSES OF ULM TYPE AND CODING RANK-HOMOGENEOUS TREES IN OTHER STRUCTURES on JSTOR.
Chisholm, J., Fokina, E., Goncharov, S., Harizanov, V., Knight, J., Quinn, S. (2009). Intrinsic bounds on complexity and definability at limit levels. The Journal of Symbolic Logic 74(3), 1047 - 1060. DOI: https://doi.org/10.2178/jsl/1245158098.
Chisholm, J., Knight, J., & Miller, S. (2007). Computable embeddings and strongly minimal theories. Journal of Symbolic Logic, 72(3), 1031–1040. doi:10.2178/jsl/1191333854. Retrieved from Computable embeddings and strongly minimal theories | The Journal of Symbolic Logic | Cambridge Core.
Knight, J., Miller, S., & Boom, M.(2007). Turing computable embeddings. Journal of Symbolic Logic, 72(3), 901–918. doi:10.2178/jsl/1191333847. Retrieved from Turing computable embeddings | The Journal of Symbolic Logic | Cambridge Core.
To edit your profile complete a Directory Change Request form